Quick sort. Selection.
Lower bound of comparison sort.
Other sorting algorithms

Chapter 3

Quick sort – the idea

• An important drawback of merge sort is that sorting is not “in place” because the merge operation is using an additional array - $\Theta(n)$ additional storage. Also the combine step takes $\Theta(n)$ time. On the contrary, insertion sort and selection sort are “in place” sorts.

• Quick sort is also based on divide and conquer. However it takes a different approach making the division difficult and the combine easy. Actually there is no combine step. Additionally, sorting is done in place and the algorithm is very fast in the average case.

• Quick sort for sorting $A[p..r]$ takes two steps:
 – *Divide* (also called *partitioning*): the sequence $A[p..r]$ is partitioned in two non-empty sub-sequences $A[p..q]$ and $A[q+1..r]$ such that $A[i] \leq A[j]$ for all $i \in p..q$ and for all $j \in q+1..r$. Note that q is an output of the partitioning stage.
 – *Conquer*: sub-sequences $A[p..q]$ and $A[q+1..r]$ are sorted recursively. Note that because of how partitioning was done, the combine step is not needed.
Quick sort – the basic algorithm

QUICK-SORT \((A, p, r)\)

1. \textbf{if} \(p < r\) \textbf{then}
2. \hspace{2em} \(q \leftarrow \text{PARTITION}(A, p, r)\)
3. \hspace{2em} QUICK-SORT \((A, p, q)\)
4. \hspace{2em} QUICK-SORT \((A, q + 1, r)\)

To sort an array \(A\) the QUICK-SORT algorithm should be called as follows: QUICK-SORT \((A, 1, \text{length}[A])\).

Partitioning is very important to obtain an efficient algorithm:

- should be done in linear time
- should be done in place
- the value of \(q\) should be more or less the mid of the array \(A\) in order to get an \(\Theta(n \lg n)\) algorithm in the average case
- to avoid infinite looping, the returned value \(q\) should always satisfy \(q < r\) (if \(q\) is equal to \(r\) then there is no partitioning!)

Quick sort is sometimes called \textit{partition sort}.

Partitioning

PARTITION \((A, p, r)\)

1. \(x \leftarrow A[p]\)
2. \(i \leftarrow p - 1\)
3. \(j \leftarrow r + 1\)
4. \textbf{while} \(TRUE\) \textbf{do}
5. \hspace{2em} \textbf{repeat}
6. \hspace{4em} \(j \leftarrow j - 1\)
7. \hspace{2em} \textbf{until} \(A[j] \leq x\)
8. \hspace{2em} \textbf{repeat}
9. \hspace{4em} \(i \leftarrow i + 1\)
10. \hspace{2em} \textbf{until} \(A[i] \geq x\)
11. \hspace{2em} \textbf{if} \(i < j\) \textbf{then}
12. \hspace{4em} exchange \(A[i] \leftrightarrow A[j]\)
13. \hspace{2em} \textbf{else}
14. \hspace{4em} \textbf{return} \(j\)

- Subscripts \(i\) and \(j\) are never out of the array \(A\) \textit{a bounds}. After the first pass \(j\) cannot be less then \(p\) because \(x = A[p]\) and \(i\) will be \(p\). If the loop is re-entered then at the beginning of the loop \(i < j\) and \(A[p..i] \leq x \leq A[j..r]\). This means that after the execution of the first two repeat loops \(j\) cannot be lower than the old value of \(i\) and \(i\) cannot be greater than the old value of \(j\).

- After the first pass \(i = p\). If partitioning stops after this pass then \(j = p < r\). If the second pass is executed then \(j\) will be decremented at least twice times. \textbf{This proves that the returned value} \(j\) \textit{is strictly less than} \(r\).

- At the end of the partitioning algorithm \(A[p..j] \leq x \leq A[j+1..r]\). If the algorithm stops after a single pass then this is obvious because \(j = p\). Otherwise at the beginning of each pas (starting with the second) we have \(i < j\) and \(A[p..i] \leq x \leq A[j..r]\). Each pass increases \(i\) and decreases \(j\) until eventually \(i \geq j\).

- Partitioning takes \(\Theta(n-r)\) time.
Partitioning - example

Let us consider an example of partitioning with $p = 1$ and $r = 8$. The elements shown in white are already placed in the right position. The values shown for i and j correspond to line 11 of the partitioning algorithm. In this example the pivot is $x = 4$. You can easily check that at the end of the algorithm $j = 4$ and $A[1..4] \leq 4 \leq A[5..8]$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Another example

- $x = 6$, $i = 0$, $j = 10$
- $6 \ 2 \ 4 \ 8 \ 9 \ 1 \ 5 \ 10 \ \underline{3}$
- $j = 9$, $i = 1$
- $3 \ 2 \ 4 \ \underline{8} \ 9 \ 1 \ \underline{5} \ 10 \ 6$
- $j = 7$, $i = 4$
- $3 \ 2 \ 4 \ \underline{5} \ 9 \ \underline{1} \ 8 \ 10 \ 6$
- $j = 6$, $i = 5$
- $3 \ 2 \ 4 \ 5 \ \underline{1} \ 9 \ 8 \ 10 \ 6$
- $j = 5$, $i = 6$
- return $q = 5$, stop!

If the array is already sorted then the partitioning algorithm returns $j = p$. So the partition is unbalanced:
- $A[p..p]$ of size 1
- $A[p+1..r]$ of size $p-r$
This partition is called a bad partition.
If the sizes of $A[p..q]$ and $A[q+1..r]$ are approximately equal then the partition is called a good partition.
Intuitive analysis of quick sort

- If there is a good split, i.e. the array is split evenly, we get:
 \[T(n) = 2 \times T(n/2) + \Theta(n), \] so \(T(n) = \Theta(n \times \lg n) \) like in merge sort.

- If there is a bad split, i.e. the array is unevenly split, we get \(T(n) = T(n-1) + \Theta(n) \). Using the iteration method we get:
 \[T(n) = \sum_{k=1}^{n} \Theta(k) = \Theta(\sum_{k=1}^{n} k) = \Theta(n^2) \]
 The worst case occurs when the input array is sorted or reverse sorted.

- If all the inputs are equally likely then the average case running time of quick sort is \(\Theta(n \times \lg n) \). The intuition is that if the input is random then some of the partitions will be balanced and some not. On the average, the partitioning procedure will produce a mixture of good and bad partitions.

- To simplify, let us assume that the good and bad partitions are alternating. Consider the case when we have a first bad partitioning followed by a second good one and a case with a first good partitioning. It can be easily noticed that the two cases are quite similar in efficiency. So, intuitively the bad partition can be ignored and on the average we will obtain an execution time \(\Theta(n \times \lg n) \) like in the best case.

Randomized versions of quick sort – the idea

- Quick sort is very efficient if we assume that all the permutations of the input are equally likely. We have seen that if the input is almost sorted we can reach the worst case. Also the worst case occurs when the partitioning procedure produces bad partitions. We can use a randomized version of quick sort to avoid these situations.

 - **Randomized algorithm** = an algorithm with the behavior dependent on the values of a random number generator.

 - **Random number generator** = a function \(\text{RANDOM}(a,b) \) that produces a random integer number \(r, a \leq r \leq b \), when called for integers \(a < b \).

- There are two approaches to randomize quick sort:
 - Generate a random permutation of the input sequence, before calling quick sort. So practically, there will be no bad input. Generating a random permutation of an input array \(A[1..n] \) can be done in time \(\Theta(n) \). How? (homework) Hint: Fisher–Yates shuffle.
 - Randomize the partitioning procedure to generate a random partition. The idea is to use a random pivot.
Quick sort with randomized partitions

RANDOMIZED-PARTITION(A, p, r)
1. $i \leftarrow \text{RANDOM}(p, r)$
2. exchange $A[p] \leftrightarrow A[i]$
3. return PARTITION(A, p, r)

RANDOMIZED-QUICK-SORT(A, p, r)
1. if $p < r$ then
2. $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$
3. RANDOMIZED-QUICK-SORT(A, p, q)
3. RANDOMIZED-QUICK-SORT($A, q + 1, r$)

• Before starting the partitioning process we exchange $A[p]$ with a random element of the array $A[p..r]$. In this way we actually generate a random pivot.
• The detailed analysis of the randomized version of quick sort is given in section 8.4 of the textbook and it assumes some mathematical insight.

Selection – problem formulation

• The i^{th} order statistic of a set of n elements is its i^{th} smallest element or the element with rank i.
• The minimum of a set is the 1$^{\text{st}}$ order statistic for $i=1$.
• The maximum of a set of n elements is the n^{th} order statistic for $i = n$.
• The median:
 – When n is odd, $n = 2k+1$, there is a single median at $i = (n+1)/2 = k+1$.
 – When n is even, $n = 2k$, there are two medians at $n/2 = k$ and $n/2+1 = k+1$.
 – Note that for either parity the median occurs at $\lceil(n+1)/2\rceil$ and $\lceil(n+1)/2\rceil$.
• The selection problem:
 – Input: a set A of n distinct numbers and a number i such that $1 \leq i \leq n$.
 – Output: an element $x \in A$ such that x is larger than exactly $i-1$ elements of A.
• Selection can be solved using sorting:
 – first sort A and then take the i^{th} element. However there are better algorithms for solving the selection problem in a straightforward way, without the need to sort.
• The maximum and minimum problems, which are special instances of the selection problem, can be solved in $\Theta(n)$ time.
• The maximum (minimum) problem require at least $n-1$ comparisons.
Selection – randomized solution

RANDOMIZED-SELECT*(A, p, r, i)**
1. **if** p = r **then**
2. **return** A[p]
3. q ← **RANDOMIZED-PARTITION**(A, p, r)
4. k ← q − p + 1
5. **if** i ≤ k **then**
6. **return** **RANDOMIZED-SELECT**(A, p, q, i)
7. **else**
8. **return** **RANDOMIZED-SELECT**(A, q + 1, r, i − k)

• This algorithm follows the idea of randomized quick sort. However we have a single recursive call instead of two.
• Line 3 partitions A[p..r] into 2 nonempty sub-arrays A[p..q] and A[q+1..r].
• Line 4 finds the number k of elements in A[p..q].
• The algorithm then determines the location of the i\(^{th}\) element. If i ≤ k then it is located in the lower sub-array. If i > k then it is located in the upper sub-array. If i = k then we have found it.
• Worst case time is Θ(n\(^2\)) and average case time in Θ(n).

Comparison sort

• Insertion sort, merge sort, selection sort and quick sort are all based on the operation of comparing two elements. Therefore, they are called *comparison sorts*.
• A comparison sort can be modeled using a *decision tree*.
 – There is one decision tree for a particular comparison sort algorithm and a given n (length of the array)
 – The tree shows where the algorithm splits based on a comparison between two elements of the array
 – The tree shows all the possible execution traces of the sorting algorithm
 – The longest path from the root to a leaf node (i.e. the tree height) gives the maximum number of comparisons of the algorithm
 – The tree has n! leaves, one leaf for each possible sort. A sort is a permutation of the array elements.
Decision tree for insertion sort

- In insertion sort the array is conceptually divided into a sorted array (leftmost) and the unsorted rest (rightmost) – separated with a vertical bar in the picture.
- The first element of the rightmost array in inserted into the leftmost array such that the resulted leftmost array stays sorted. The insertion is based on comparing successively the first element of the rightmost array with the elements of the leftmost array (starting with the last) – compared elements are shown in bold in the picture.

```
Decision tree for insertion sort

• In insertion sort the array is conceptually divided into a sorted array (leftmost) and the unsorted rest (rightmost) – separated with a vertical bar in the picture.
• The first element of the rightmost array is inserted into the leftmost array such that the resulted leftmost array stays sorted. The insertion is based on comparing successively the first element of the rightmost array with the elements of the leftmost array (starting with the last) – compared elements are shown in bold in the picture.
```

```
2013
```

Lower bound for comparison sort

- *Lower bound theory* looks for finding a lower bound of the execution time for every algorithm aimed at solving a given problem. So a lower bound is problem specific, rather than algorithm specific.
- If you know a lower bound then, from the practical point of view, this means that you are definitely sure that you cannot do better than the lower bound on every algorithm for solving that problem.
- Consider the sorting problem using a comparison sort algorithm. Assume your array has n elements.
- You algorithm can be represented as a decision tree with $n!$ leaves. Assuming that this tree has height h, this means that your comparison algorithm will require in the worst case at least h comparisons.
- Also note that a decision tree is a binary tree, so $2^h \geq n!$.
- Using the Stirling asymptotic approximation of $n! \approx (n/e)^n$, we get $2^h \geq (n/e)^n$ which clearly shows that $h \geq n \log n - n \log e$. Therefore, the worst case execution time of every comparison sort algorithm has a lower bound of $n \log n$, i.e. it is $\Omega(n \log n)$.

```
Lower bound for comparison sort

• Lower bound theory looks for finding a lower bound of the execution time for every algorithm aimed at solving a given problem. So a lower bound is problem specific, rather than algorithm specific.
• If you know a lower bound then, from the practical point of view, this means that you are definitely sure that you cannot do better than the lower bound on every algorithm for solving that problem.
• Consider the sorting problem using a comparison sort algorithm. Assume your array has $n$ elements.
• You algorithm can be represented as a decision tree with $n!$ leaves. Assuming that this tree has height $h$, this means that your comparison algorithm will require in the worst case at least $h$ comparisons.
• Also note that a decision tree is a binary tree, so $2^h \geq n!$.
• Using the Stirling asymptotic approximation of $n! \approx (n/e)^n$, we get $2^h \geq (n/e)^n$ which clearly shows that $h \geq n \log n - n \log e$. Therefore, the worst case execution time of every comparison sort algorithm has a lower bound of $n \log n$, i.e. it is $\Omega(n \log n)$.
```

```
2013
```
Count sort - idea

- Let a be an array, let b be the array obtained after sorting a using a stable sorting algorithm (i.e. it preserves the relative order of equal elements in a). Then the position of an element $a[i] = x$ of a in b is equal to the number of elements of a that are strictly lower than x plus the number of elements in a that are equal to x and precede x in a plus 1.

- Counting sort computes the place of an element in the sorted array by counting the number of elements that are strictly lower than it and the number of elements that are equal to it and precede it.

- However, in the usual setting this approach would require $O(n^2)$ execution time. Homework: write the algorithm!

- However, we can do better, even than quick sort, but only by considering additional constraints on input a!

Distributions count sort – the idea

- Let us assume that the elements $a[i]$ are taken from the set of integers $\{1, 2, \ldots, k-1, k\}$. The idea of counting can be applied by thinking that the elements of a can be distributed in k arrays such that all the elements in array i are equal to i, for all $1 \leq i \leq k$. Actually, we only need to count how many elements are distributed to each array, and then apply the idea of sorting by counting.

- Counting distributions uses an array c of length k and can be done in $O(n)$ time using a single traversal of the original array a ($n = length[a]$). For every element $x = a[i]$ of a we only need to increment its number of occurrences $c[x]$ in a.

- Then, we count how many elements $c'[i]$ are in the array such that $c'[i] \leq i$. $c'[i] = \sum_{1 \leq j \leq i} c[j]$, for all $1 \leq i \leq k$. This can be done “in place” using a single traversal of array c in $O(k)$ time.

- Finally, the elements of a are transferred to their positions in the sorted array b using the information saved in c' (actually c because of “in place” computation). This can be done in time $O(n)$, using a single downwards traversal of a.

2013
Distributions count sort – the algorithm

DISTRIBUTIONS-COUNT-SORT(A, B, k)
1. for \(i \leftarrow 1, k \) do
2. \(C[i] \leftarrow 0 \)
3. ▶ Compute the number \(C[i] \) of elements equal to \(i \)
4. for \(j \leftarrow 1, \text{length}[A] \) do
5. \(C[A[j]] \leftarrow C[A[j]] + 1 \)
6. ▶ Compute the number \(C[i] \) of elements less or equal than \(i \)
7. for \(i \leftarrow 2, k \) do
8. \(C[i] \leftarrow C[i] + C[i - 1] \)
9. ▶ Transfer the elements to the sorted array
10. for \(j \leftarrow \text{length}[A], 1 \) do
11. \(B[C[A[j]]] \leftarrow A[j] \)
12. \(C[A[j]] \leftarrow C[A[j]] - 1 \)

• Initially: \(A = [4, 1, 4, 2, 4, 1, 5, 4] \).
• After steps 4 – 5: \(C = [2, 1, 0, 3, 1] \).
• After steps 7 – 8: \(C = [2, 3, 3, 6, 7] \).
• The execution time is \(O(n+k) \). When \(k \) is \(O(n) \) the execution time is \(O(n) \).

Brief review of pointers

• Pointer = a variable that contains the address of another variable.

```c
int a;
int b[5];
/* p is a pointer to int. */
int *p;
p = &a;
/* q is a pointer to an array of int, */
int (*q)[5];
q = &b;
/* r is an array of pointers to int. */
int *r[5];
r[2] = &b[2];
/* t is a pointer to a pointer to int. */
int **t;
t = &p;
/* f is a function returning a pointer to char. */
char *f();
/* g is a pointer to a function returning a char. */
char (*g)();
```
ANSI C Functions for Sorting and Searching

- qsort() implements a quick-sort algorithm to sort “in place” an array of num elements, each of width bytes, starting at address base. compare is a pointer to a user-supplied routine that compares two array elements and returns a value specifying their relationship.

```c
void qsort(void *base, size_t num, size_t width, int (*compare)(const void *elem1, const void *elem2));
```

- `base` = pointer to the start of target array
- `num` = size of target array in number of elements
- `width` = size of an element of the target array in number of bytes
- `compare` = pointer to a function for comparing two array elements; if first argument is strictly less than the second argument returns –1 else if the first argument equals the second argument returns 0 else returns +1.

- bsearch() performs a binary search of a sorted array. base, num, width, compare have similar meanings with qsort(). key is the value being sought

```c
void *bsearch(const void *key, const void *base, size_t num, size_t width, int (*compare)(const void *elem1, const void *elem2));
```

- `key` = pointer to the key to search for
- `base, num, width, compare` = similar to qsort()
- Return value: a pointer to an occurrence of key in the array pointed to by base. If key is not found, the function returns NULL.

Sorting integers and strings

- Sample input:
  ```
  i
  5
  55
  22
  11
  44
  33
  c
  5
  ee
  bb
  a
  dd
  cc
  x
  ```

- Sample output:
  ```
  Array:
  55 22 11 44 33
  Sorted array:
  11 22 33 44 55
  Array:
  ee
  bb
  aa
  dd
  cc
  Sorted array:
  aa
  bb
  cc
  dd
  ee
  ```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Maximum number of array elements. */
#define NMAX 100

/* Maximum number of characters per string. */
#define LMAX 20

int compare_int(const void *pa, const void *pb);
int compare_str(const void *pa, const void *pb);
void read_int(int *pn, int x[]);
void read_str(int *pn, char *y[]);
void write_int(int n, int x[]);
void write_str(int n, char *y[]);

int x[NMAX+1];
char *y[NMAX+1];
int n;
char cmd[5];

An Example (I)

int compare_int(const void *pa, const void *pb) {
 int a = *((int*)pa);
 int b = *((int*)pb);

 if (a < b) {
 return -1;
 }
 else if (a == b) {
 return 0;
 }
 else {
 return 1;
 }
}

int compare_str(const void *pa, const void *pb) {
 char *a = *(char **)pa;
 char *b = *(char **)pb;

 return strcmp(a, b);
}

An Example (II)

void read_int(int *pn, int x[]) {
 int i;
 scanf("%d", pn);

 for (i=1; i<=*pn; i++) {
 scanf("%d", &x[i]);
 }
}

void read_str(int *pn, char *y[]) {
 char buf[LMAX+1];
 int i;
 scanf("%d", pn);

 for (i=1; i<=*pn; i++) {
 scanf("%s", buf);
 y[i] = (char *)calloc(strlen(buf)+1, sizeof(char));
 strcpy(y[i], buf);
 }
}

void write_int(int n, int x[]) {
 int i;
 for (i=1; i<=n; i++) {
 printf("%d ", x[i]);
 }
 printf("\n");
}

void write_str(int n, char *y[]) {
 int i;
 for (i=1; i<=n; i++) {
 printf("%s\n", y[i]);
 }
}
int main() {
 char c;
 scanf("%s", cmd);
 c = tolower(cmd[0]);
 while (c != 'x') {
 if (c == 'i') {
 read_int(&n, x);
 printf("Array:\n\n");
 write_int(n, x);
 qsort((void *)(&x[1]), n, sizeof(int), &compare_int);
 printf("Sorted array:\n\n");
 write_int(n, x);
 } else if (c == 'c') {
 read_str(&n, y);
 printf("Array:\n\n");
 write_str(n, y);
 qsort((void *)(y+1), n, sizeof(char *), &compare_str);
 printf("Sorted array:\n\n");
 write_str(n, y);
 } else { printf("Unknown command !\n"); }
 scanf("%s", cmd);
 c = tolower(cmd[0]);
 }
 return 0;
}