A-BOA: Basics, Applications, Theoretical Foundations, and Demonstration

Tutors: Vadim Ermolayev, Maxim Davidovsky
Dept of IT, Zaporozhye National Univ., Ukraine
Components, IPR, Sponsors

- **A-BOA Tutorial** has been developed at the Intelligent Systems Research Group affiliated at the Department of IT of Zaporozhye National University

- A Theoretical Framework for Agent Negotiations on Semantic Contexts and Propositional Substitutions has been developed in RACING project

- **Structural Difference Discovery Engine (SDDE)** agent-based software tool has been developed by Maxim Davidovsky as a part of his PhD Project

- **Instance Migration Engine (IME)** software tool have been developed in Performance Simulation Initiative (PSI) project funded by Cadence Design Systems GmbH
 - All rights with respect to IME are retained by Cadence Design Systems GmbH

- **A-BOA Wiki** containing support materials for A-BOA Tutorial – a Semantic MediaWiki based resource

- Questions and answers are supported using live contextual collaboration in LiveNetLife

- **A-BOA tutorial** at WIMS 2012 is sponsored in part by DataArt
Plan

- **Walkthrough Problem and Example**
 - Ontology Instance Migration Problem
 - Simple Biblio ontologies

- **Part 1: Motivation, Basics, and Applications**
 - What is ontology alignment? and
 - Why is the technology needed?

- **Part 2: Theoretical Foundations and Demonstration**
 - Use of agent-based approaches for building ontology alignments - answering "how" questions
 - Demo of Agent-Based solution for Ontology Instance Migration Problem

- Round the World in 80 ... min
 - Some important things will be just mentioned
 - Tasties are left for individual exploration
Workflow

What:
- Problem Statement and Classification

Why:
- Applications and Requirements

How:
- A-BOA Tutorial
 - June 13, 2012
 - A-BOA Tutorial
 - June 13, 2012

Demo
- Requirements Solved by Agent Orientation
- Walkthrough Example and Problem
- A-BOA

1. Problem Statement and Classification
2. Applications and Requirements
3. A-BOA Tutorial
Support and Questions

• A-BOA Wiki
 – http://isrg.kit.znu.edu.ua/a-boa/
 – Wiki articles to follow the Tutorial
 – Sections in printer friendly form (PDF) – not yet there
 – Tutorial slides corresponding to Wiki articles – not yet there

• Questions and answers anytime
 – Focused: LiveNetLife chat
 – No connection 😞
 – Broader: Oral or Wiki discussion pages
 – After the Tutorial: @Wiki discussion pages answered by e-mail
A Walkthrough
Problem and Example

A-BOA Wiki: Walkthrough Problem and Example
Ontology Instance Migration

- When is IM needed:
 - OE – new version developed
 - Schema Changed
 - Instances to be transformed ...
 - System
 Interoperability/Integration

- Simplification:
 - We have the result – for teaching purposes

- How?
 - Different techniques
 - We will show one in the Demo
Example: Biblio Schemas

- **Biblio ontologies** – a VERY simple example
 - Different knowledge representations for the same body of knowledge about conference papers
- Real ontologies are:
 - MORE complex (schema)
 - MUCH MORE bulky (instances)
 - E.g. [10]
- Imagine:
 - Biblio-2 is for a conference management system
 - Biblio-1 is the model for a paper repository at a publisher
 - Papers accepted for a conference have to appear in the publisher’s paper repository
 - Publisher’s information about the page limits has to be communicated to the conference management system
- **Biblio-1 and Biblio-2 have to be aligned**

Example: Biblio Instances

a) The instances of Biblio-1

b) The instances of Biblio-2

The result we have to achieve
Part 1: Motivation, Basics, and Applications

A-BOA Wiki: Motivation, Basics, and Applications
Part 1: Structure

- **Ontology Alignment** in general and at a relatively basic level:
 - Outlines the **motivation** to study OA
 - **WHAT:** Denotes OA and puts the problem into the context of the other knowledge harmonization and integration problems
 - **WHY:** Analyses the **applications** that require aligning knowledge representations, summarizes requirements
Section 1.1: Motivation to Study Ontology Alignment

“I find it critical to remember that every ontology is a treaty – a social agreement – among people with some common motive in sharing.”

Are Interpretations the Same?

• In row 1?
• In row 20?
Motivation - Abstract

• The World is multi-faceted and **polysemic**
 => Many different views or interpretations by different individuals or groups

• Reflected in different **knowledge representations of the same** reality

• We do many things across several facets or even across **subject domains**
 => Several knowledge representations (ontologies) have to be harmonized or aligned
 – To enable proper **communication, coordination** or information processing
Motivation - Utility

- An **alignment** is essentially:
 - A **result** of applying a set of formal transformations to a knowledge representation – to its schema and individuals

- An alignment allows:
 - Interpreting knowledge that is external to the interpreter
 - In the same way the interpreter views his own knowledge schema and assertions

- E.g., given that a bi-directional alignment of Biblio-2 to Biblio-1 exists:
 - A publisher (Biblio-1) – seamlessly imports the assertions about the accepted papers to its production repository
 - A conference organizer (Biblio-2) – gets publisher’s information about publication constraints, like page limits
 - Common motive in sharing is satisfied

- Many kinds of important applications require OA
Section 1.2: Basics of Ontology Alignment

A-BOA Wiki: Basics of Ontology Alignment
Section 1.2: Structure

- **Basic Definitions and Generic Problem Statement**
 - Denotes an *ontology*, *ontology schema*, *assertional part*, *mapping*, and *ontology matching process*
 - Based on these a definition of *ontology alignment* is given

- **Classification of Ontology Alignment Problems**
 - Several features of participating ontologies
 - The span of the aligned ontology elements across ontologies

- **Ontology Instance Migration Problem**
 - A *walkthrough problem* with a little bit of more formal detail

- **Ontology Alignment Metrics**
 - Not all of them, but those important for solving Ontology Instance Migration Problem – structural and assertional
Section 1.2.1: Basic Definitions and Generic Problem Statement
Basic Definitions: Ontology

- **Ontology** (c.f. [22]) – a tuple:
 \[O = (C, P, I, T, V, \leq, \perp, \in, =) \]

 where the sets \(C, P, I, T, V \) are pair-wise disjoint and:
 - \(C \) – set of **concepts** (or classes)
 - \(P \) – set of **properties** (object and datatype properties)
 - \(I \) – set of **individuals** (or instances)
 - \(T \) – set of **datatypes**
 - \(V \) – set of **values**
 - \(\leq \) – reflexive, anti-symmetric, and transitive relation on \((C \times C) \cup (P \times P) \cup (T \times T)\) called **specialization** (subsumption) that form partial orders on:
 - \(C \) – concept hierarchy; and
 - \(P \) – property hierarchy
 - \(\perp \) – irreflexive and symmetric relation on \((C \times C) \cup (P \times P) \cup (T \times T)\) called **exclusion**
 - \(\in \) – relation over \((I \times C) \cup (I \times V)\) called **instantiation**
 - \(= \) – relation over \(I \cup P \cup (I \times V)\) called **assignment**

Basic Definitions: TBox and ABox

- An **ontology** (c.f. [36]) \(O \) comprises:
 - Schema \(S \) and its assertional part \(A \)
 - \(O = (S, A) \); \(S = (C, P, T, ...) \); \(A = (I, V, ...) \)

- **Ontology schema** \(S \) (or a terminological component, TBox) contains statements describing:
 - The concepts from \(C \) of \(O \)
 - The properties from \(P \) of those \(C \)
 - The datatypes \(T \) for the elements of \(P \)
 - The axioms over the elements of \(C, P, T \)

- The **set of individuals** \(A \) (or assertional component, ABox) contains:
 - Ground statements about the instances of \(O \)
 - Attribution of the instances of \(O \) to the schema

New York, NY, USA
A **Mapping** (or a **Mapping Rule**, c.f. [22]) is a tuple

\[m = (e, e', R, n), \]

where:
- \(e, e' \) are the elements of \(C, P, I, T, V \) of the respective ontologies \(O \) and \(O' \)
- \(R \) is a set of relations
- \(n \) is a confidence value (typically in the range of \([0, 1]\))

TBox: Biblio v.1

- **Person**
 - **name**: String
- **Paper**
 - **title**: String
- **RegularPaper**
 - **volumeTitle**: String
 - **maxNoPages**: Integer = 15
- **Proceeding**
 - **volumeTitle**: String

\[m = (\text{Paper} \in C, \text{ProceedingsPaper} \in C', \leftrightarrow, 1) \]

TBox: Biblio v.2

- **Author**
 - **name**: String
 - **affiliation**: String
- **ProceedingsPaper**
 - **title**: String
 - **startPage**: Integer
 - **endPage**: Integer
- **FullPaper**
 - **volumeTitle**: String
 - **maxPageNo**: Integer = 15

A-BOA Wiki: Basic Definitions ...
Basic Definitions: Mapping

- A more complex Mapping:
 \[m = (\langle \text{PaN1.strtPage}=179\rangle \in V, \langle \text{PrP1.strtPage}\rangle \in V', \text{migrate}, 1) \]

\[\text{...} \]
Basic Defs: Ontology Matching

- **Ontology matching** (c.f. [22])

 - a *process* of *discovering* the *mappings* between the elements e and e' of different ontologies O and O'

- A generic ontology matching process

 - **Discover Mappings**

BasicDefs: Ontology Alignment

- **Ontology Alignment**
 - the **result** of applying the discovered set of **mappings** to the respective **ontologies**

- **A Generic Ontology Alignment Problem**
 - Build alignments following a **Generic Ontology Alignment process**
 - Discover Mappings
 - Apply Mappings
 - Could be interweaved
 - Result: **Alignment** – shaded gray

- Several kinds of OA problems ...
Section 1.2.2: Classification of Ontology Alignment Problems

A-BOA Wiki: Classification of Ontology Alignment Problems
Classification: Dimensions

- Let:
 - \(O = (C, P, I, T, V, ...), \ e \ \text{belongs to} \ O
 - \(O' = (C', P', I', T', V', ...), \ e' \ \text{belongs to} \ O'

- **Ontology Alignment Problems** are classified based on:
 - The features of participating ontologies \(O, O' \); and
 - The span of \(e, e' \) across \(C, P, I, T, V - s \) of \(O, O' \)

- **Classification dimensions:**
 - **Span** – Complete, Structural, or Assertional alignment
 - **Dynamicty** – Static versus Dynamic aligned ontologies
 - **Direction** – Bi-directional versus Uni-directional alignment
 - **Distribution** – Fully Distributed settings versus the use of a Central referee ontology

- Additionally we differentiate:
 - **One-Shot** versus **Iterative** Alignment approaches
Classification: Span

- By the **span** of aligned elements Ontology Alignment Problems are classified as:
 - **Complete** - if alignments span across TBox-es and ABox-es of O, O'
 - **Structural** - if alignments cover only the TBox-es of O, O'
 - **Assertional** - if alignments cover only the ABox-es of O, O'
Classification: Dynamicity

- **Wrt dynamicity** of aligned elements Ontology Alignment Problems are classified as:

 - **Static** – e, e' of O, O' are considered unchanged
 - At least for the time of alignment

 - **Dynamic** – e and e' may be changed while DM or AM phase is executed
 - Potential invalidity of mappings and alignments
 - Additional revision may be required
Classification: Direction

- By **direction** of alignments, Ontology Alignment Problems are classified as:
 - **Bi-directional** – e and e' of both ontologies (O and O') are aligned
 - **Uni-directional** – alignments are applied to only one ontology – either O or O'
Classification: Distribution

- By the degree of **distribution** in their settings Ontology Alignment Problems are classified as:
 - **Centralized** – rely on a central **Referee Ontology** O^r as a bridge for constructing correct mappings
 - Not always possible
 - E.g. competitors
 - E.g. appropriate referee ontology is not available
 - **Distributed** – without a central referee
One-Shot vs Iterative

- **One-Shot** techniques – align e, e' of O, O' in one iteration
 - Shortcomings:
 - **Dynamicty**: e, e' may change – invalid alignment
 - **Bad quality** revealed in subsequent evaluation

- **Iterative** approaches
 - Add **evaluation** step in the loop
 - Iterate in the **refinement loop** until the quality of alignment is not sufficient
Ontology Instance Migration

• Let:
 - \(O_s = (S^s, A^s) \) - a source ontology
 - \(O_t = (S^t, A^t) \) - a target ontology
 - \(O_s, O_t \) conceptualize the semantics of the same Universe of Discourse \(U \)
 - E.g. the same Bibliography domain
 - \(U \) regarded as a collection of ground facts: \(U = \{ f \} \)
 - Essentially, \(O_s \) and \(O_t \) are the interpretations of \(U \)
 - E.g. Marylin vs Albert

• \(O_s \) and \(O_t \) would be considered identical iff:
 - \(\forall f \in U \) \(\text{int}^{s}_I (f) \equiv \text{int}^{t}_I (f) \)
 - E.g. Either Marylin OR Albert
 - \(\text{int}_I (f) \) is the interpretation of the fact \(f \) by the individuals from \(I \) of ontology \(O \)
Ontology Instance Migration

• Let $idiff(U, O^s, O^t)$:

 − An **abstract metric of interpretation difference**

 − $idiff = 0$ for identical ontologies

 − $idiff$ increases monotonically to 1 with the increase of the number of $f \in U$ such that

 \[\neg (\text{int}_{I^s}(f) \equiv \text{int}_{I^t}(f)) \]

 − $idiff = 1$ iff $\forall f \in U (\neg (\text{int}_{I^s}(f) \equiv \text{int}_{I^t}(f)))$

• $(1 - idiff)$ may further be interpreted as **balanced F-measure** in evaluation of semantic distance
Ontology Instance Migration

- O^s and O^t are **structurally different** if $S^s \neq S^t$
 - Structural difference – a transformation $T: S^s \rightarrow S^t$
 - T may be sought in the form of a set of nested transformation rules

- Let:
 - ABox of O^s contains individuals ($I^s \neq \emptyset$), while
 - ABox of O^t is empty ($I^t = \emptyset$)

- The problem of minimizing $\text{idiff}(U, O^s, O^t)$ by:
 - (1) Taking the individuals from I^s
 - (2) Transforming them correspondingly to the structural difference between O^s and O^t using T; and
 - (3) Adding them to I^t

- is denoted as **Ontology Instance Migration** problem
 - Classified as **ASUD** Ontology Alignment Problem
Ontology Instance Migration

- Theoretically can be solved in one shot
- In practice each of the sub-tasks (1-3) may result in the loss of assertions[10]
 - **Iterative refinement** could yield results with a lower resulting \(idiff \) value

- An iterative solution:
 - Develops a sequence of \(O^s \) states \(O^s_{st_i} \) to minimize the \(idiff(U, O^s_{st_i}, O^t) \) in a way that:

\[
idiff(U, O^s_{st_i}, O^t) < idiff(U, O^s_{st_j}, O^t) \Rightarrow i < j
\]

where: \(O^s_{st_i} \) is \(O^s \) in the state after accomplishing iteration \(i \)
Section 1.2.4: Ontology Alignment Metrics

“... I would contend that analysts frequently should not seek a single measure and will never find a perfect measure. ... It is time to stop acting embarrassed about the supposed surplus of measures and instead make fullest possible use of their diversity.”

Ontology Alignment Metrics

- **OA problem** – minimizing **semantic difference** between \(e \) and \(e' \) of \(O \) and \(O' \)
 - **Metrics** – for measuring this semantic difference
 - \(O = (S, A) \)
 - Have to cope with the semantic differences between:
 - \(S \) and \(S' \) - the **metrics for Structural Difference**
 - \(A \) and \(A' \) - the **metrics for Assertional Difference**
Metrics for Structural Difference

- Based on assessing the semantic distance between the structural elements, comparing:
 - **Structural Elements** themselves
 - The semantic context of the Structural Components
 - The **individuals** relevant to the Structural Components

- A good overview - in [20]
 - Not all discussed here

Instance(-Based Structural) Similarity

- **Rationale:** similar structural elements (e.g. concepts) have similar instances

- Let:
 - D a domain
 - A and B – the concepts in D

- A is (somewhat) similar to B if $I_A \cap I_B \neq \emptyset$
 - I_A and I_B are the sets of individual assertions about D; and
 - $I_A = \{i_k\}: \forall k, \text{instance}_\text{of}(i_k, A)$

- Instance Similarity is often measured \cite{doan2003learning} by a symmetric Jaccard coefficient:

$$\text{Sim}_I(A, B) = \frac{P(I_A \cap I_B)}{P(I_A \cup I_B)}$$

 - $P(I)$ is the probability that a randomly chosen instance of D belongs to I

Instance (Based Structural) Similarity

\[
\text{Sim}_I(A, B) = \frac{P(I_A \cap I_B)}{P(I_A \cup I_B)}
\]

- **Concepts**
 - \(A=\text{Biblio-1:RegularPaper}\); and
 - \(B=\text{Biblio-2:FullPaper}\)

- **So:**
 - \(I_A \cap I_B = I_A \cup I_B\); and
 - It is very probable that \(P(I_A \cap I_B) = P(I_A \cup I_B)\)

- Hence: \(\text{Sim}_I(A, B)\) is close to 1.0
Contextual or Feature Similarity

- **Rationale**: similar structural elements (e.g. Concepts) have similar structural contexts [17, 18]

- Contexts may be understood as **feature sets**

- Hence, Contextual Similarity may be measured using **Tversky metrics** [48]
 - A feature set has to be defined
 - E.g. the set of similarity measures of the object properties and related concepts s_j

 $Sim_C = \frac{1}{m} \sum s_j$

 - In that sense contextual similarity may be regarded as an integrative metric for a pair of concepts

A-BOA Wiki: **Ontology Alignment Metrics**
Datatype and Measurement Similarity

- **Rationale**: similar structural elements (e.g. Concepts) have similar properties
- **Shortcoming**: the problem of determining similarity among properties has the same complexity as measuring the similarity of concepts
- **Hint**: the set of properties of a concept is the part of its feature set
 - Measure property similarity using a contextual similarity metric
- **Complication**: different types of properties, e.g.:
 - **Datatype properties**
 - Reflect that a concept has a characteristic which:
 - Has a particular type (a color, a weight, a string, ...)
 - Is measured using specific units (a year, an integer, ...)
 - May have constraints on its values expressed as logical formulas, e.g.: \((weight \leq 90) \land (age \leq 30)\)
 - **Referential (object) properties**
 - Reflect a relationship to another concept (property)

A-BOA Wiki: **Ontology Alignment Metrics**
Datatype and Measurement Similarity

- **Biblio example:**
 - $A = \text{Biblio-1:RegularPaper}$
 - Has a datatype property $a = \text{maxNoPages}$
 - Measured in integers
 - $B = \text{Biblio-2:FullPaper}$
 - Has a datatype property $b = \text{maxPageNo}$
 - Measured in integers
 - Properties a and b may be considered similar
 - Hypothesis $\text{similar_to} (A, B)$
 - Sim_M between A and B increased
 - Sim_M will be even higher if a and b have the same constraints/values:
 - $(a = 16)$ and $(b = 16)$
Lexical Similarity

- **Rationale**: similar structural elements have similar identifiers
 - E.g. lexical roots are the same
 - May of course lead to confusion
 - However, a good hint for supposing similarity

- **Lexical heuristics** work if supported by other evidence:
 - E.g. instance or feature similarity for a pair of concepts is high

- The following lexical metric Sim_L is often used
 - Let R_A, R_B be the sets of roots of the words which constitute the names of concepts A and B respectively, then:
 \[
 Sim_L = \frac{|(R_A \cap R_B)|}{|(R_A \cup R_B)|}
 \]

- **Biblio example**:
 - $A = \text{Biblio-1:RegularPaper}$
 - $B = \text{Biblio-2:FullPaper}$
 - $Sim_L (A, B) = 0.33$
Metrics for Assertional Difference

- Have a slightly different nature
- Are often based on measuring the fraction of aligned individuals in terms of:
 - Recall
 - Precision, or
 - A combination of those
 - E.g. balanced F-measure

- For the **ontology instance migration** problem:
 - $\text{Precision} (P)$ is the fraction of migrated individuals that are relevant
 - $\text{Recall} (R)$ is the fraction of relevant individuals that are migrated
For the **ontology instance migration** problem:

- **Precision** \((P)\) is the fraction of migrated individuals that are relevant
 \[P = \frac{tp}{tp + fp};\]
- **Recall** \((R)\) is the fraction of relevant individuals that are migrated
 \[R = \frac{tp}{tp + fn}\]
- Additionally - **Accuracy** \((A)\)
 \[A = \frac{(tp+tn)}{(tp + fp + tn + fn)}\]

An ideal migration outcome corresponds to \(P = R = 1\)

Neither \(P\) nor \(R\) separately fully reflects the correctness of migration results

F-measure \((F)\) could be of interest as it brings \(P\) into correlation with \(R\) as a harmonic mean

\[
F = \frac{1}{\alpha / P + (1 - \alpha) / R} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \\
\beta^2 = (1 - \alpha) / \alpha
\]

Balanced F-measure equally weights \(P\) and \(R\):

\[\alpha = 1/2 \Rightarrow \beta = 1\]
Section 1.3: Applications of Ontology Alignment

A-BOA Wiki: Applications of Ontology Alignment
Section 1.3: Structure

- A few (1 😊) selected categories of applications
 - A broader spectrum is surveyed in [11]
- Focus on the requirements to ontology alignment that are posed by the applications in a category
 - A particular **ontology alignment problem**
 - Why is an **agent-based solution** appropriate?
- Categories of applications:
 - **Distributed Information Retrieval**
 - Human-Machine Dialogues
 - Ontology Evolution, Versioning, Refinement
 - Service Composition
- The **requirements** to ontology alignment technology are finally summarized

Distributed Info Retrieval

- **DIR** applications assist retrieving and fusing information from heterogeneous, distributed, and independent IR

- **Ontologies** in DIR are used for:
 - Transforming user queries and system responses
 - Representing Structures and Semantics of IR

- Ontology alignments are required:
 - At Query Transformation step
 - At Result Fusion step

We provide IR-s annotated in terms suitable for us. Normally, we do not care about the others.

I have a query to all of you in terms (and in language) that I understand.
Distributed Info Retrieval

- Ontology alignments are required:
 - At Query Transformation (QT) – for:
 - Correlating query structure and semantics with different information resource schemas
 - Building respective partial queries
 - At Result Fusion (RF) – for:
 - Transforming and putting together the retrieved information instances
- QT Requirement: a solution for a Structural Static Uni-directional Distributed (SSUD) OA problem
- RF Requirements:
 - A solution for an Assertional Static Uni-directional Distributed (ASUD) OA problem
 - High recall – important not to miss any potentially relevant information; irrelevant can be filtered out using other techniques
- General requirement: scalability wrt the complexity and number of aligned ontologies

A-BOA Wiki: Distributed Info Retrieval
Agents in DIR

- E.g. SEWASIE project [13]:
 - A multi-agent system for querying heterogeneous data sources integrated using ontologies
 - http://www.sewasie.org/

Requirements to Onto Alignment

Application Category

<table>
<thead>
<tr>
<th>Application Category</th>
<th>Requirements</th>
<th>Ontology Alignment Problems</th>
<th>Method</th>
<th>Agent Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Span</td>
<td>Dynamics</td>
<td>Direction</td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td>Precision</td>
<td>Run-time Solution</td>
<td>Semantic contexts</td>
</tr>
<tr>
<td>Distributed Information Retrieval</td>
<td>+</td>
<td>~</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Human-Machine Dialogues</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ontology Engineering and Management</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Service Composition</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Legend: + = minimal requirement/basic solution; ~ = desired; + = required.

- **Instance Migration** *(ASUD, Iterative):*
 - **Required:**
 - Distributed Information Retrieval
 - Ontology Engineering and Management *(Evolution, Versioning, Refinement)*
 - **Good to have:**
 - Service Composition *(ASBD)*
Part 2: Theoretical Foundations and Demonstration
Part 2: Structure

- Answers the "how" group of questions
 - A more advanced material
 - More focused on agent-based approaches for building ontology alignments

- Overviews selected **agent-based frameworks** for ontology alignment:
 - Information Flow Theory based approaches
 - Argumentation based frameworks
 - Semantic Contexts and Propositional Substitutions

- Offers, as a **practical reinforcement** for the overview
 - Demonstration of the Agent-Based Software Prototype
 - A very brief one – showing the results, not the process
 - The tool for solving one particular problem of Ontology Alignment
 - Ontology Instance Migration Problem
Theoretical Foundations

- Agent-based approach for solving a **generic ontology alignment problem**
- **Discover Mappings**
 - W and W' are the wrapper agents for ontologies O and O'
 - Agent R wraps the central referee ontology O^r and helps W and W' finding the proper mappings M and M' using O^r (a *matchmaker* function)
 - W and W' produce their own sets of mappings M and M':
 - In collaboration with each other (a fully distributed problem setting); or
 - Also in collaboration with R (the problem setting with a central referee ontology)
- **Apply Mappings**
 - M and M' are autonomously applied by W and W' to O and O'
- Problem: **How** do the agents collaborate and develop these mappings?
Theoretical Foundations

- Substantial attention in the literature

- **Mainstream**: use of (different flavors of) negotiation techniques as the most natural and well-proven mechanism for reaching agreements

- Several fundamental theoretical approaches with different expressive power
 - Most widely used formalism is the Dung’s *Argumentation Framework or its derivatives*
 - The formalism used in our software (demo):
 - Negotiations on propositional substitutions in semantic contexts
 - Based on the Type Theory
Section 2.1: Information Flow Theory Based Approaches
Information Flow Theory

- A formal foundation by Schorlemmer et al. [42]
 - **Ontology Alignment** – a product of *meaning negotiation* between software agents
 - Focus: introduction of **general alignment interaction models**

- The approach
 - Is grounded on Barwise and Seligman’s **theory of information** [2]
 - Uses their notion of **information flow** (IF) as a basic formalism

- Alignment is:
 - Defined as a system of **classifications** and **infomorphisms**
 - Obtained via **meaning coordination** between agents Ag_1 and Ag_2 through the information channel:
 - C is the classification determined by the meaning coordination done before
 - A_1, A_2 – respective classifications
 - f_1, f_2 – respective infomorphisms

The **IF**-based approach has been implemented as the **IF-Map** method for automated ontology mapping [29]

http://www.aktors.org/technologies/ifmap/
Section 2.2: Argumentation Based Frameworks
• Abstract **Argumentation Framework (AF)** introduced by Dung [14] as a pair:

\[
AF = \langle AR, \text{attacks} \rangle
\]

- \(AR\) – a set of arguments
- \(\text{attacks}\) – a binary relation on \(AR\); and
- \(\text{attacks}(A, B)\) signifies that argument \(A\) attacks argument \(B\)

• **Different flavors of AF** used for ontology alignment by agents to determine acceptable mappings in negotiations

Argumentation Frameworks

• **Different flavors of AF** used for ontology alignment:

 - **Value-Based Argumentation Framework (VAF)** by Bench-Capon [3]

 \[AF = \langle AR, attacks, V, val, P \rangle \]

 - \(V \) – a non-empty set of values
 - \(val \) – a function which maps the elements of \(AR \) to the elements of \(V \)
 - \(P \) – the set of possible audiences

 - **Voting-based VAF (V-VAF)** and a **Strength VAF (S-VAF)** by Isaac et al. [28]

 - **S-VAF** extends **VAF** with a strength function \(S : AR \rightarrow [0, 1] \)
 - **V-VAF** is defined by adding a notion of support
 - A reflexive binary relation over \(AR \) disjoint to \(attacks \)
 - Allows counting arguments as **defenders** (or **co-attackers**) within a particular attack

Section 2.3: Semantic Contexts and Propositional Substitutions

A-BOA Wiki: Propositional Substitutions
Propositional Substitutions

- Given O_s and O_t
- Choose a **center of gravity**
 - A pair of “central” concepts with high similarity
- Discover mappings for a **structural context** by
 - Exchanging **hypotheses** (propositions)
 - Trying **substitutions** of own statements by received propositions
 - Measuring **similarity improvement** (several metrics)
- Accepting good propositions (conceding)
- Exclude the pair from the negotiation set
Propositional Substitutions

• Center of Gravity: Paper ↔ ProceedingsPaper

Publisher

Conf MS

TBox: Biblio v.1 (O^s)

TBox: Biblio v.2 (O^t)
Section 2.4: Demonstration of A-BOA Solution for Instance Migration

A-BOA Wiki: Demonstration of the Agent-Based Software Prototype
Workflow and Tools

- (I) SDiff Discovery Engine (SDDE)
 - Compared to manual
- (II) SDiff Discovery Engine (SDDE)
- (III) Instance Migration Engine (IME)
- (IV) Knowledge Engineer
(I) Discover Structural Changes

- Structural Diff Discovery Engine

- Done manually
(II) Generate Transformation Rules

- Generated by the Structural Diff Discovery Engine
- Imported by the Instance Migration Engine
(III) Migrate Instances

- Instance Migration Engine [10]
 - Generates Migration Log

(IV) Evaluate Migration Log

- Manual – by a Knowledge Engineer
- Decision to be made about a need to refine ...

Migration Log

Migrating instances of class: <http://www.somewhere.com/ontologies/2011/1/BibliographicOntology_1.owl#Person>
To
<http://www.somewhere.com/ontologies/2011/1/BibliographicOntology_1.owl#PCMember>
The initial set of instances:
Migrated instances:

New Condition to Transformation Rule
(added manually)

<concept concept_name="http://www.somewhere.com/ontologies/2011/1/BibliographicOntology_1.owl#Person">
 <condition>
 <supplementaryCondition type="concept" name="PCMember"/>
 </condition>
 <rename>PCMember</rename>
 <removeProperty>name</removeProperty>
 <addProperty datatype="integer">id</addProperty>
 <addProperty datatype="string">expertIn</addProperty>
</concept>
Example: Biblio Instances

a) The instances of Biblio-1

b) The instances of Biblio-2

The result we have to achieve
Final Questions Please

http://isrg.kit.znu.edu.ua/a-boa/