Definition of Graphs and Trees.
Representation of Trees.

Chapter 6

Definition of graphs (I)

- A **directed graph** or **digraph** is a pair \(G = (V,E) \) s.t.:
 - \(V \) is a finite set called the *set of vertices* of \(G \).
 - \(E \subseteq V \times V \) is a binary relation on \(V \) called the *set of arcs* of \(G \). An *arc* of \(G \) is denoted by an ordered pair of vertices \((u,v) \), \(u,v \in V \). Note that \((u,v) \neq (v,u) \).
- An **undirected graph** is a pair \(G = (V,E) \) s.t.:
 - \(V \) is a finite set called the *set of vertices* of \(G \).
 - \(E \) is a set of unordered pairs of vertices \(\{u,v\} \), \(u,v \in V \) called the *edges* of \(G \). For uniformity we denote an edge with \((u,v) \), but in an undirected graph \((u,v) = (v,u) \).
- Note that we allow self-loops only in directed graphs.

![Diagram](a. A directed graph \(G_1 \))

![Diagram](b. An undirected graph \(G_2 \))
Definition of graphs (II)

- If \(a = (u, v) \) is an arc in a directed graph then \(a \) is called incident-from \(u \) and incident-to \(v \).
- If \(e = (u, v) \) is an edge in an undirected graph then \(e \) is called incident to \(u \) and \(v \).
- If \((u,v)\) is an arc (or edge) in (directed or undirected) graph then \(v \) is called adjacent to \(u \). Note that the adjacency relation is symmetric for undirected graphs. If the graph is directed then \(v \) is called adjacent-from \(u \) and \(u \) is called adjacent-to \(v \).
- If \(G = (V, E) \) is an undirected graph and \(v \in V \) then degree\((v) = |\{e \in E \mid e \text{ is incident to } v\}| \). For example in \(G_2 \) we have degree\((5) = 2 \).
- If \(G = (V, E) \) is a directed graph and \(v \in V \) then in-degree\((v) = |\{e \in E \mid e \text{ is incident-to } v\}| \) and out-degree\((v) = |\{e \in E \mid e \text{ is incident-from } v\}| \). For example in \(G_1 \) we have in-degree\((4) = 2 \) and out-degree\((2) = 3 \).
- If \(G = (V, E) \) is a directed graph and \(v \in V \) then degree\((v) = \text{in-degree}(v) + \text{out-degree}(v) \). For example in \(G_1 \) we have degree\((2) = 5 \).

Unix file system graph

![Unix file system graph](image-url)
Supply chain graph

Airline networks
Syntax tree

```
while b ≠ 0
  if a > b
    a := a − b
  else
    b := b − a
return a
```

Social network graph
Web graph

Paths in graphs (I)

• A path of length k from a vertex u to a vertex u' in a graph $G = (V,E)$ is a sequence of vertices $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ such that $u = v_0$, $u' = v_k$ and $(v_{i-1}, v_i) \in E$ for all $i = 1, 2, \ldots, k$. Note then the length of a path is equal to the number of edges (arcs) of the path.

• If there is path p from u to u' then we say that u' is accessible from u via p and we write this as $u \rightarrow^p u'$.

• A path is called an elementary path if and only if all the vertices on the path are distinct. For example, in G_1, $\langle 1, 2, 5, 4 \rangle$ is an elementary path and $\langle 2, 5, 4, 5 \rangle$ is not an elementary path.

• A sub-path of a path $p = \langle v_0, v_1, v_2, \ldots, v_k \rangle$ is a contiguous subsequence of vertices in p. Thus, for all i and j s.t. $0 \leq i \leq j \leq k$ the sequence of vertices $\langle v_i, v_{i+1}, \ldots, v_j \rangle$ is a sub-path of p.

• A cycle in a directed graph is a path $\langle v_0, v_1, v_2, \ldots, v_k \rangle$ s.t. $v_0 = v_k$. A cycle is called an elementary cycle if and only if v_1, v_2, \ldots, v_k are all distinct. Note that a self-loop in a directed graph is a cycle of length 1.
Paths in graphs (II)

- Two paths \(\langle v_0, v_1, v_2, \ldots, v_{k-1}, v_0 \rangle \) and \(\langle w_0, w_1, w_2, \ldots, w_{k-1}, w_0 \rangle \) are the same cycle if and only if exists an integer \(j \) such that \(w_i = v_{(i+j) \mod k} \) for all \(i = 0, 1, \ldots, k-1 \). For example, in \(G_1 \) the path \(\langle 2, 4, 1, 2 \rangle \) is the same cycle as \(\langle 4, 1, 2, 4 \rangle \).

- A directed graph without self-loop is called an elementary directed graph.

- An elementary cycle in an undirected graph is a path \(\langle v_0, v_1, v_2, \ldots, v_k \rangle \) s.t. \(v_0 = v_k \), \(k \geq 3 \) and \(v_1, v_2, \ldots, v_k \) are all distinct. For example, in \(G_2 \) the path \(\langle 1, 2, 5, 1 \rangle \) is an elementary cycle and \(\langle 1, 5, 1 \rangle \) is a cycle which is not elementary.

- A graph without cycles is called acyclic. A directed acyclic graph is sometimes called a DAG.

Connected graphs

- An undirected graph is called connected if and only if for all pairs of vertices there is a path that connects them.

- Property 1: the accessibility relation between vertices of an undirected graph is an equivalence relation, i.e. it is reflexive, symmetric and transitive. Prove this statement as homework.

- The connected components of an undirected graph are the equivalence classes defined by the accessibility relation. For example, the connected components of \(G_2 \) are \{1, 2, 5\}, \{3, 6\} and \{4\}. An undirected graph is connected if and only if it has a single connected component.

- A directed graph is called strongly connected if and only if for all pairs of vertices, each one is accessible from the other.

- Property 2: the mutual accessibility relation between the vertices of a directed graph is an equivalence relation. Prove this statement as homework.

- The strongly connected components of a directed graph are the equivalence classes defined by the mutual accessibility relation. For example, the strongly connected components of \(G_1 \) are: \{1, 2, 4, 5\}, \{3\} and \{6\}. A directed graph is strongly connected if and only if it has a single strongly connected component.
Strongly connected components - example

- A graph $G = (V,E)$ is a sub-graph of a graph $G' = (V',E')$ if $V' \subseteq V$ and $E' \subseteq E$.
- If $V' \subseteq V$ then the sub-graph of G induced by V' is $G' = (V',E')$ s.t.:

 $E' = \{(u,v) \in E \mid u,v \in V'\}$

- If $G = (V,E)$ is an undirected graph then the directed version of G is $G' = (V',E')$ s.t. $(u,v) \in E'$ if and only if $(u,v) \in E$. This means that each edge (u,v) in G is substituted by two arcs (u,v) and (v,u) in G'.

- If $G = (V,E)$ is a directed graph then the undirected version of G is $G' = (V',E')$ s.t. $(u,v) \in E'$ if and only if $u \neq v$ and $(u,v) \in E$. This means that the undirected version is obtained from the directed version by eliminating directions and self-loops. Note that because (u,v) and (v,u) represent the same edge of an undirected graph, the undirected version of a directed graph contains it only once.

- In a directed graph, the neighbor of a vertex u is any vertex adjacent to u in the undirected version of the graph.

Sub-graphs

- A graph $G' = (V',E')$ is a sub-graph of a graph $G = (V,E)$ if $V' \subseteq V$ and $E' \subseteq E$.
- If $V' \subseteq V$ then the sub-graph of G induced by V' is $G' = (V',E')$ s.t.:

 $E' = \{(u,v) \in E \mid u,v \in V'\}$.

- If $G = (V,E)$ is an undirected graph then the directed version of G is $G' = (V',E')$ s.t. $(u,v) \in E'$ if and only if $(u,v) \in E$. This means that each edge (u,v) in G is substituted by two arcs (u,v) and (v,u) in G'.

- If $G = (V,E)$ is a directed graph then the undirected version of G is $G' = (V',E')$ s.t. $(u,v) \in E'$ if and only if $u \neq v$ and $(u,v) \in E$. This means that the undirected version is obtained from the directed version by eliminating directions and self-loops. Note that because (u,v) and (v,u) represent the same edge of an undirected graph, the undirected version of a directed graph contains it only once.

- In a directed graph, the neighbor of a vertex u is any vertex adjacent to u in the undirected version of the graph.
Complete graphs

- A complete graph (or clique) is an undirected graph $G = (V,E)$ s.t. $E = \{(u,v) \mid u \neq v \text{ and } u,v \in V\}$.

Bipartite graphs

- A bipartite graph is an undirected graph G s.t. its set of vertices can be partitioned into two sets U and V s.t. if $(u,v) \in E$ then either $u \in U$ and $v \in V$ or $u \in V$ and $v \in U$.
Planar graphs

• A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

• Kuratowski’s theorem: A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of \(K_5\) or \(K_{3,3}\).

• A subdivision of a graph results from inserting vertices into edges (for example, changing an edge •——• to •——•) zero or more times.

• Practical criteria (theorems):
 – If \(v \geq 3\) then \(e \leq 3v - 6\);
 – If \(v \geq 3\) and there are no cycles of length 3, then \(e \leq 2v - 4\).

Multi-graphs and hyper-graphs

• A multi-graph is derived from an undirected graph by allowing self-loops and multiple edges between its vertices.

• A hyper-graph is derived from an undirected graph by allowing an edge to connect an arbitrary subset of vertices rather than only two vertices. The edges of a hyper-graph are called hyper-edges.
Isomorphic graphs

• Graphs $G = (V,E)$ and $G' = (V',E')$ are called isomorphic if and only if there is a one-to-one mapping $f: V \rightarrow V'$ s.t. $(u,v) \in E$ if and only if $(f(u),f(v)) \in E'$, i.e. G' can be obtained from G by renaming its vertices.

Forests

• An undirected acyclic graph is called a forest.

• A connected forest is called a (free) tree.

• A forest is composed of trees.
Free trees

• There are many variations of the concept of tree: free trees, rooted trees, ordered trees and positional trees.
• A free tree is an undirected, acyclic and connected graph. If the connectedness property is dropped out then the graph is called a forest.

![A free tree](image1)

![A forest](image2)

![An undirected graph which is neither a free tree nor a forest](image3)

Properties of free trees

• **Theorem**: Let $G = (V,E)$ be an undirected graph. The following statements are equivalent:
 1. G is a free tree.
 2. Any two vertices of G are connected by a unique elementary path.
 3. G is connected but if we remove an arbitrary edge from E the resulting graph is not connected.
 4. G is connected and $|E| = |V| - 1$.
 5. G is acyclic and $|E| = |V| - 1$.
 6. G is acyclic but if we add an arbitrary edge to E the resulting graph contains a cycle.

• **Proof**: see the textbook. It follows the pattern: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6 \Rightarrow 1$.
• **Example proof for 6 \Rightarrow 1**: Let u and v be two arbitrary vertices of G. If they are adjacent, there is a path from u to v. If they are not adjacent then adding the edge (u,v) to E according to the hypothesis, the resulting graph will contain a cycle. The edges of this cycle that are distinct from (u,v) are all members of E and determine a path from u to v. Because u and v have been chosen arbitrarily, it follows that G is connected. But because according to the hypothesis G is acyclic, it follows that G is a free tree, q.e.d.
Rooted trees (I)

- A *rooted tree* is a free tree with a distinguished vertex called *root*. Vertices of trees are very often called *nodes*. We shall use this terminology hereafter.
- Let T be a tree rooted at r and let x be a node in T. Any node y on the unique path from r to x is called an *ancestor* of x.
- If y is an ancestor of x then x is a *descendant* of y. Note that any node is both a descendant and an ancestor of itself.
- If y is an ancestor of x and $y \neq x$ then y is called a *proper ancestor* of x and x is called a *proper descendant* of y.
- The *sub-tree* of T rooted at x is the tree induced by the descendants of x and with root x.
- If the last edge on the path from r to x in T is (y, x) then y is called the *parent* of x and x is called the *child* of y. Note that the root r is the unique node of T with no parent.
- Two nodes with the same parent are called *siblings*. A node with no child is called an *external node* or *leaf*. Otherwise it is called *internal node*.

Rooted trees (II)

- The number of children of a node x of a rooted tree T is called the *degree* of x.
- The length of the unique path from the root r to a node x of a tree T is called the *depth* or *level* of x in T. The highest depth of a node of a tree is called the *height* of the tree.
- An *ordered tree* is a rooted tree s.t. for each node the set of its children is ordered. This means that if a node has k children then there is a first child, a second child, etc.
Binary trees

- The best way to define binary trees is using a recursive definition.
- A binary tree is:
 - Either an empty set of nodes defining an empty binary tree
 - Or a structure composed of a root node, a binary tree called its left sub-tree and a binary tree called its right sub-tree.
- In a non-empty binary tree with root r:
 - If the left sub-tree is non-empty then its root is called the left child of r
 - If the right sub-tree is non-empty then its root is called the right child of r
- Important note: a binary tree is NOT an ordered tree with the degree of its nodes less or equal than 2 because in an ordered tree if a node x has a single child then it cannot be qualified as left or right child of x, while in a binary tree this distinction is important!

These trees are identical as ordered trees but not as binary trees. A binary tree can be mapped to an ordered tree by adding an explicit representation of the missing information.

Positional trees

- In a positional tree the children of a node are labeled with distinct positive integer numbers. The i-th child of a node x is absent if there are no children of x labeled with i.
- A k-ary tree is a positional tree such that for each node x the children labeled with values greater than k are missing. A k-ary tree with $k = 2$ is called a binary tree.
- A strict k-ary tree is a k-ary tree s.t. all the internal nodes have degree k. Note that adding the missing information we obtain a strict k-ary tree.
- A full k-ary tree is a strict k-ary tree s.t. all the leafs have the same depth.
- The number of nodes of depth d in a full k-ary tree is k^d. It follows that the height of a full k-ary tree with n leafs is $\log_k n$.
- The number of internal nodes of a full k-ary tree of height h is:
 \[1 + k + k^2 + \ldots + k^{h-1} = (k^h - 1)/(k - 1) \]
- The number of internal nodes of a full binary tree of height h is $2^h - 1$.
Representation of binary trees (I)

- A binary tree of height h can be represented using an array of size $2^{h+1} - 1$ because it has maximum $2^h - 1$ internal nodes and 2^h leafs. This representation is straightforward, but has the drawback that if the tree is sparse it still consumes memory which is exponential in the height of the tree.
- The nodes of a full binary tree can be numbered as follows:
 - The root is numbered with 1
 - The left child of node i is numbered with $2i$ and the right child with $2i+1$
- The node numbered with i is stored on the position i in the array
- The numbering scheme allows the computation of the parent, left child and right child in $O(1)$ time. The parent of node i is $\lfloor i/2 \rfloor$.

![Binary tree diagram]

Representation of binary trees (II)

- A more efficient representation of binary trees is the linked representation. A binary tree is represented as a set of linked nodes. Each node x has a key $key[x]$, a parent link $p[x]$, a left link $left[x]$ and a right link $right[x]$.

<table>
<thead>
<tr>
<th>key</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td>right</td>
</tr>
</tbody>
</table>

- The root of a tree T is given by a pointer $root[T]$.

![Linked tree diagram]
Representation of general rooted trees

- If the number of children of each node has an upper bound of k we can replace the fields left and right with an array children of size k. This representation doesn’t work if the number of children of a node doesn’t have an upper bound or the upper bound isn’t known in advance. The representation is inefficient if the tree has many nodes with a number of children significantly less than k.

- Happily, there is an efficient representation of general rooted trees as binary trees which is called the child-sibling representation for obvious reasons. Each node x has a parent link $p[x]$, a first-child link $\text{first-child}[x]$ and a next-sibling link $\text{next-sibling}[x]$.

Binary tree traversal

- Very often we might need to traverse a tree, i.e. visit each node in the tree exactly once. A full traversal produces a linear ordering for the information in the tree.

- When traversing a binary tree we want to treat each node and its sub-trees in the same fashion. If we let L, D, R stand for moving left, visiting the root (data) and moving right the there are six possible traversals: LDR, LRD, DLR, DRL, RDL and RLD. If we adopt the convention that we traverse left before right then only three traversals remain: LDR, LRD and DLR. To these we assign the names: inorder, postorder and preorder.

- A recursive algorithm for inorder traversal is shown below. The algorithms for preorder and postorder traversal are similar.

\[
\text{BIN-TREE-INORDER}(t)
\]

1. if $t \neq \text{NIL}$ then
2. \hspace{1em} \text{BIN-TREE-INORDER}(\text{left}[t])
3. \hspace{1em} \text{VISIT}(t)
4. \hspace{1em} \text{BIN-TREE-INORDER}(\text{right}[t])
Time complexity of binary tree traversal

- **Theorem:** If the time required to visit a node is $\Theta(1)$ then the time required to traverse a binary tree with n nodes is $\Theta(n)$.

 Proof:
 Let $T(n)$ be the time required to traverse a binary tree with n nodes.
 We assume that $T(0) = b$ and that the time required to visit a node is a.
 If $n > 0$ and the left sub-tree has m nodes then:
 $T(n) = T(m) + T(n - m - 1) + a$. We shall prove by induction that $T(n) = (a+b)n + b$ and the result of the theorem follows trivially.
 The property holds if $n = 0$ because $T(0) = b$.
 We assume that the property holds for $0 \leq m < n$ and we prove that it also holds for $m = n$. According to the recurrence $T(n) = (a + b)m + b + (a + b)(n - m - 1) + b + a = (a + b)(n - 1) + 2b + a = (a + b)n + b$, q.e.d.

Implementation of binary trees – header file

```c
#ifndef BINTREE_H
#define BINTREE_H

typedef struct bin_tree_node {
    int key;
    struct bin_tree_node *left,*right;
} BinTreeNode;

typedef struct bin_tree_node *BinTree;

/* constructor */
BinTree binTreeEmpty(void);
BinTree binTree(int k,BinTree l,BinTree r);
/* conversion constructor */
BinTree binTreePInt(int *a);
/* selectors */
BinTree binTreeLeft(BinTree t);
BinTree binTreeRight(BinTree t);
int binTreeKey(BinTree t);
/* tester */
int binTreeIsEmpty(BinTree t);
#endif
```

2013
Implementation of binary trees – c file (I)

```c
#include <stdlib.h>
#include "bintree.h"
static BinTree binTreePInt1(int *a, int *i);
BinTree binTreeEmpty(void) {
    return NULL;
}
BinTree binTree(int k, BinTree l, BinTree r) {
    BinTreeNode *t =
        (BinTreeNode *)malloc(sizeof(BinTreeNode));
    t->left = l;
    t->right = r;
    t->key = k;
    return t;
}
BinTree binTreePInt(int *a) {
    int i = 0;
    return binTreePInt1(a, &i);
}
```

Implementation of binary trees – c file (II)

```c
static BinTree binTreePInt1(int *a, int *i) {
    if (a[*i] <= 0) {
        (*i)++;  return NULL;
    } else {
        int k;
        BinTree l, r;
        k = a[*i++];
        l = binTreePInt1(a, i);
        r = binTreePInt1(a, i);
        return binTree(k, l, r);
    }
}
BinTree binTreeLeft(BinTree t) { return t->left; }
BinTree binTreeRight(BinTree t) { return t->right; }
int binTreeKey(BinTree t) { return t->key; }
int binTreeIsEmpty(BinTree t) { return (t == NULL); }
```
Implementation of binary trees – explanation

- Implementation of binary trees as an ADT contains the following functions (operations):
 - Constructors:
 - Constructor of an empty binary tree: `binTreeEmpty()`
 - Constructor taking the value of the root, the left sub-tree and the right sub-tree: `binTree()`
 - Constructor that takes the values of the nodes from an array given as a pointer to an integer: `binTreePInt()`
 - Selectors:
 - Selector of the left sub-tree of a nonempty binary tree: `binTreeLeft()`
 - Selector of the right sub-tree of a nonempty binary tree: `binTreeRight()`
 - Selector of the root value of a nonempty binary tree: `binTreeKey()`
 - Recognizers (testers):
 - Recognizer of an empty binary tree: `binTreeIsEmpty()`
 - Implementation of `binTreePInt()` uses a helper function `binTreePInt1()` that constructs a binary tree with values taken from an array of integers, starting from a given index \(i \). \(i \) is incremented as the construction progresses. Note that the helper function is not exported outside the module, i.e. it “private” to the module. Therefore, it is declared as `static`.

Main program

- The main program reads a sequence of lines of text, each line describing a binary tree. The keys are positive integers. A negative value indicates a missing information.
- A line contains: the key of the root followed by the keys in the left sub-tree then followed by the keys in the right sub-tree. For example the tree shown below is given as:

 - The programs stops after reading an empty tree.
 - For each non-empty tree the program displays the tree in a structured fashion:

```
    7
   / \
  3   4
 /   /  \
12 11
```

2013
Example of input – output

Input:
2 0 0
2 3 0 0 4 0 0
2 3 4 10 0 0 11 0 0 5 0 0 6 7 15 0 0 12 0 0 8 9 0 0 0
0

Output:
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

C code of the main program

```c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "bintree.h"

void printTree(BinTree t, int level) {
    if (!binTreeIsEmpty(t)) {
        int i;
        printTree(binTreeRight(t), level+1);
        for (i=0; i<3*level; i++) {
            printf(" ");
        }
        printf("%d\n", binTreeKey(t));
        printTree(binTreeLeft(t), level+1);
    }
}

void stringToArrayOfInt(char *s, int *a) {
    int *j = -1;
    const char *token;
    token = strtok(s,seps);
    while (token != NULL) {
        a[++j] = atoi(token);
        token = strtok(NULL,seps);
    }
}

correction
```